0%

洛谷P4389 付公主的背包

设商品体积为

则所求答案为

麦克劳林公式展开后可得

枚举倍数后可得系数,再求一次多项式即可得到答案,时间复杂度

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
#include <bits/stdc++.h>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/trie_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/priority_queue.hpp>

using namespace std;
using namespace __gnu_pbds;
using namespace __gnu_cxx;
typedef long long ll;
//tree<int, null_type, less<int>, rb_tree_tag, tree_order_statistics_node_update> tr;
//__gnu_pbds::priority_queue<int, greater<int>, pairing_heap_tag> qu;
//typedef trie<string, null_type, trie_string_access_traits<>, pat_trie_tag, trie_prefix_search_node_update> pref_trie;
const int N = 200005;
int n, m, k;
namespace polybase {//范围为1e9需要先取模,别忘记改模数
const ll mod = 998244353;
int limit;
ll _wn[25];

ll fpow(ll x, ll r)
{
ll result = 1;
while (r)
{
if (r & 1)result = result * x % mod;
r >>= 1;
x = x * x % mod;
}
return result;
}

int _ = []
{
for (int i = 0; i <= 23; i++)_wn[i] = fpow(3, (mod - 1) >> i);
return 0;
}();

inline int norm(int n) { return 1 << __lg(n * 2 - 1); }

void NTT(ll *A, int type)
{
int i, j = limit >> 1, k, l, c = 0;
ll u, v, w, wn;
for (i = 1; i < limit - 1; i++)
{
if (i < j)swap(A[i], A[j]);
for (k = limit >> 1; (j ^= k) < k; k >>= 1);
}

for (l = 2; l <= limit; l <<= 1)
{
i = l >> 1, wn = _wn[++c];
for (j = 0; j < limit; j += l)
{
w = 1;
for (k = j; k < j + i; k++)
{
u = A[k], v = A[k + i] * w % mod;
A[k] = u + v;
if (A[k] >= mod)A[k] -= mod;

A[k + i] = u - v;
if (A[k + i] < 0)A[k + i] += mod;
w = w * wn % mod;
}
}
}
if (type == -1)
{
ll inv = fpow(limit, mod - 2);
for (i = 0; i < limit; i++)A[i] = A[i] * inv % mod;
for (i = 1; i < limit / 2; i++)swap(A[i], A[limit - i]);
}
}

struct poly : public vector<ll>
{
using vector<ll>::vector;
#define T (*this)

poly modxk(int k) const
{
k = min(k, (int) size());
return poly(begin(), begin() + k);
}

poly rev() const { return poly(rbegin(), rend()); }

friend void NTT(poly &a, const int type) { NTT(a.data(), type); }

friend poly operator*(const poly &x, const poly &y)
{
if (x.empty() || y.empty())return poly();
poly a(x), b(y);
int len = a.size() + b.size() - 1;
limit = norm(len);
a.resize(limit), b.resize(limit);
NTT(a, 1);
NTT(b, 1);
for (int i = 0; i < limit; i++)
a[i] = a[i] * b[i] % mod;
NTT(a, -1);
a.resize(len);
return a;
}

poly operator+(const poly &b)
{
poly a(T);
if (a.size() < b.size())
a.resize(b.size());
for (int i = 0; i < b.size(); i++)//用b.size()防止越界
{
a[i] += b[i];
if (a[i] >= mod)a[i] -= mod;
}
return a;
}

poly operator-(const poly &b)
{
poly a(T);
if (a.size() < b.size())
a.resize(b.size());
for (int i = 0; i < b.size(); i++)
{
a[i] -= b[i];
if (a[i] < 0)a[i] += mod;
}
return a;
}

poly operator*(const ll p)
{
poly a(T);
for (auto &x:a)
x = x * p % mod;
return a;
}

poly &operator<<=(int r) { return insert(begin(), r, 0), T; }//注意逗号,F(x)*(x^r)

poly operator<<(int r) const { return poly(T) <<= r; }

poly operator>>(int r) const { return r >= size() ? poly() : poly(begin() + r, end()); }

poly &operator>>=(int r) { return T = T >> r; }//F[x]/(x^r)

poly deriv()//求导
{
if (empty())return T;
poly a(size() - 1);
for (int i = 1; i < size(); i++)//注意是size()
a[i - 1] = T[i] * i % mod;
return a;
}

poly integ()//积分
{
poly a(size() + 1);
for (int i = 1; i < a.size(); i++)//注意是a.size()
a[i] = T[i - 1] * fpow(i, mod - 2) % mod;
return a;
}

poly inv(int n)
{
poly a{fpow(T[0], mod - 2)};
int k = 1;
while (k < n)
{
k <<= 1;
a = (a * 2 - modxk(k) * a * a).modxk(k);
}
return a.modxk(n);
}

poly sqrt(int n)//f[0]必须等于1
{
poly a{1};
int k = 1;
const ll inv2 = fpow(2, mod - 2);
while (k < n)
{
k <<= 1;
a = ((modxk(k) * a.inv(k)).modxk(k) + a) * inv2;
}
return a.modxk(n);
}

poly ln(int n)//需要保证f[0]=1
{
return (deriv() * inv(n)).integ().modxk(n);
}

poly exp(int n)//需要保证f[0]=1
{
poly a{1};
int k = 1;
while (k < n)
{
k <<= 1;
a = (a * (poly{1} - a.ln(k) + modxk(k))).modxk(k);
}
return a.modxk(n);
}

#undef T
};
}
using namespace polybase;
int cnt[N];
ll inv[N];

int main()
{
int p, q, u, v, w, x, y, z, T;
cin >> n >> m;
for (int i = 1; i <= n; i++)
scanf("%d", &x), cnt[x]++;
for (int i = 1; i <= m; i++)
inv[i] = fpow(i, mod - 2);
poly F(m + 1);
for (int i = 1; i <= m; i++)
for (int j = 1; i * j <= m; j++)
F[i * j] = (F[i * j] + inv[j] * cnt[i]) % mod;
F = F.exp(m + 1);
for (int i = 1; i <= m; i++)
printf("%d\n", F[i]);
return 0;
}