| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 
 | #include <bits/stdc++.h>#include <ext/pb_ds/tree_policy.hpp>
 #include <ext/pb_ds/trie_policy.hpp>
 #include <ext/pb_ds/assoc_container.hpp>
 #include <ext/pb_ds/priority_queue.hpp>
 
 using namespace std;
 using namespace __gnu_pbds;
 using namespace __gnu_cxx;
 typedef long long ll;
 
 
 
 const int N = 200005;
 int n, m, k;
 const ll mod = 1e9 + 7;
 
 ll fpow(ll x, ll r)
 {
 ll result = 1;
 while (r)
 {
 if (r & 1)result = result * x % mod;
 r >>= 1;
 x = x * x % mod;
 }
 return result;
 }
 
 namespace binom {
 ll fac[N], ifac[N];
 int __ = []
 {
 fac[0] = 1;
 for (int i = 1; i <= N - 5; i++)
 fac[i] = fac[i - 1] * i % mod;
 ifac[N - 5] = fpow(fac[N - 5], mod - 2);
 for (int i = N - 5; i; i--)
 ifac[i - 1] = ifac[i] * i % mod;
 return 0;
 }();
 
 inline ll C(int n, int m)
 {
 if (n < m || m < 0)return 0;
 return fac[n] * ifac[m] % mod * ifac[n - m] % mod;
 }
 
 inline ll A(int n, int m)
 {
 if (n < m || m < 0)return 0;
 return fac[n] * ifac[n - m] % mod;
 }
 }
 using namespace binom;
 namespace interpolate {
 ll f[N], pre[N], suf[N];
 
 ll lagrange(ll *f, int n, ll x)
 {
 if (x <= n)return f[x];
 ll ans = 0;
 pre[0] = x % mod;
 for (int i = 1; i <= n; i++)
 pre[i] = pre[i - 1] * (x - i + mod) % mod;
 suf[n + 1] = 1;
 for (int i = n; i; i--)
 suf[i] = suf[i + 1] * (x - i + mod) % mod;
 for (int i = 1; i <= n; i++)
 {
 ll res = ifac[i] * ifac[n - i] % mod * pre[i - 1] % mod * suf[i + 1] % mod * f[i] % mod;
 if ((n - i) & 1)res = mod - res;
 ans += res;
 if (ans >= mod)ans -= mod;
 }
 return ans;
 }
 }
 using namespace interpolate;
 
 int vis[N];
 ll prime[N];
 int cnt;
 
 void Prime(int n)
 {
 cnt = 0;
 for (int i = 2; i <= n; i++)
 {
 if (!vis[i])prime[++cnt] = i;
 for (int j = 1; j <= cnt && i * prime[j] <= n; j++)
 {
 vis[i * prime[j]] = 1;
 if (i % prime[j] == 0)break;
 }
 }
 }
 
 ll w[N], num_p[N], g[N];
 int id1[N], id2[N];
 int sz, t;
 ll limit;
 
 inline int getid(ll x)
 {
 if (x <= sz)return id1[x];
 else return id2[limit / x];
 }
 
 void init(ll n)
 {
 limit = n;
 sz = sqrt(n) + 5;
 Prime(sz);
 t = 0;
 for (ll l = 1, r; l <= n; l = r + 1)
 {
 r = n / (n / l);
 w[++t] = n / l;
 num_p[t] = w[t] - 1;
 if (w[t] <= sz)id1[w[t]] = t;
 else id2[n / w[t]] = t;
 }
 for (int i = 1; i <= cnt; i++)
 for (int j = 1; j <= t && prime[i] * prime[i] <= w[j]; j++)
 {
 int id = getid(w[j] / prime[i]);
 num_p[j] = (num_p[j] - (num_p[id] - (i - 1)) % mod + mod) % mod;
 }
 }
 
 ll S(ll n, int j, int r)
 {
 if (prime[j] > n)return 0;
 ll ans = (num_p[getid(n)] - j + mod) * r % mod;
 for (int i = j + 1; i <= cnt && prime[i] * prime[i] <= n; i++)
 for (ll e = 1, sp = prime[i]; sp <= n; sp *= prime[i], e++)
 ans = (ans + C(e + r - 1, e) * (S(n / sp, i, r) + (e > 1))) % mod;
 return ans;
 }
 
 int main()
 {
 int p, q, u, v, x, y, z, T;
 cin >> T;
 while (T--)
 {
 scanf("%d%d", &n, &m);
 init(m);
 for (int i = 1; i <= 35; i++)
 f[i] = (S(m, 0, i) + 1) % mod, f[i] = (f[i] + f[i - 1]) % mod;
 printf("%lld\n", lagrange(f, 35, n));
 }
 return 0;
 }
 
 |